Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Cardiol ; 220: 56-66, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38580040

RESUMEN

Peripheral artery disease (PAD) is associated with impaired blood flow in the lower extremities and histopathologic changes of the skeletal calf muscles, resulting in abnormal microvascular perfusion. We studied the use of convolution neural networks (CNNs) to differentiate patients with PAD from matched controls using perfusion pattern features from contrast-enhanced magnetic resonance imaging (CE-MRI) of the skeletal calf muscles. We acquired CE-MRI based skeletal calf muscle perfusion in 56 patients (36 patients with PAD and 20 matched controls). Microvascular perfusion imaging was performed after reactive hyperemia at the midcalf level, with a temporal resolution of 409 ms. We analyzed perfusion scans up to 2 minutes indexed from the local precontrast arrival time frame. Skeletal calf muscles, including the anterior muscle, lateral muscle, deep posterior muscle group, and the soleus and gastrocnemius muscles, were segmented semiautomatically. Segmented muscles were represented as 3-dimensional Digital Imaging and Communications in Medicine stacks of CE-MRI perfusion scans for deep learning (DL) analysis. We tested several CNN models for the 3-dimensional CE-MRI perfusion stacks to classify patients with PAD from matched controls. A total of 2 of the best performing CNNs (resNet and divNet) were selected to develop the final classification model. A peak accuracy of 75% was obtained for resNet and divNet. Specificity was 80% and 94% for resNet and divNet, respectively. In conclusion, DL using CNNs and CE-MRI skeletal calf muscle perfusion can discriminate patients with PAD from matched controls. DL methods may be of interest for the study of PAD.

2.
Magn Reson Imaging ; 106: 31-42, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38065273

RESUMEN

Diagnosing and assessing the risk of peripheral artery disease (PAD) has long been a focal point for medical practitioners. The impaired blood circulation in PAD patients results in altered microvascular perfusion patterns in the calf muscles which is the primary location of intermittent claudication pain. Consequently, we hypothesized that changes in perfusion and increase in connective tissue could lead to alterations in the appearance or texture patterns of the skeletal calf muscles, as visualized with non-invasive imaging techniques. We designed an automatic pipeline for textural feature extraction from contrast-enhanced magnetic resonance imaging (CE-MRI) scans and used the texture features to train machine learning models to detect the heterogeneity in the muscle pattern among PAD patients and matched controls. CE-MRIs from 36 PAD patients and 20 matched controls were used for preparing training and testing data at a 7:3 ratio with cross-validation (CV) techniques. We employed feature arrangement and selection methods to optimize the number of features. The proposed method achieved a peak accuracy of 94.11% and a mean testing accuracy of 84.85% in a 2-class classification approach (controls vs. PAD). A three-class classification approach was performed to identify a high-risk PAD sub-group which yielded an average test accuracy of 83.23% (matched controls vs. PAD without diabetes vs. PAD with diabetes). Similarly, we obtained 78.60% average accuracy among matched controls, PAD treadmill exercise completers, and PAD exercise treadmill non-completers. Machine learning and imaging-based texture features may be of interest in the study of lower extremity ischemia.


Asunto(s)
Diabetes Mellitus , Enfermedad Arterial Periférica , Humanos , Enfermedad Arterial Periférica/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Claudicación Intermitente , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/irrigación sanguínea
3.
Sci Rep ; 12(1): 14978, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056069

RESUMEN

Activation functions in the neural network are responsible for 'firing' the nodes in it. In a deep neural network they 'activate' the features to reduce feature redundancy and learn the complex pattern by adding non-linearity in the network to learn task-specific goals. In this paper, we propose a simple and interesting activation function based on the combination of scaled gamma correction and hyperbolic tangent function, which we call Scaled Gamma Tanh (SGT) activation. The proposed activation function is applied in two steps, first is the calculation of gamma version as y = f(x) = axα for x < 0 and y = f(x) = bxß for x ≥ 0, second is obtaining the squashed value as z = tanh(y). The variables a and b are user-defined constant values whereas [Formula: see text] and [Formula: see text] are channel-based learnable parameters. We analyzed the behavior of the proposed SGT activation function against other popular activation functions like ReLU, Leaky-ReLU, and tanh along with their role to confront vanishing/exploding gradient problems. For this, we implemented the SGT activation functions in a 3D Convolutional neural network (CNN) for the classification of magnetic resonance imaging (MRIs). More importantly to support our proposed idea we have presented a thorough analysis via histogram of inputs and outputs in activation layers along with weights/bias plot and t-SNE (t-Distributed Stochastic Neighbor Embedding) projection of fully connected layer for the trained CNN models. Our results in MRI classification show SGT outperforms standard ReLU and tanh activation in all cases i.e., final validation accuracy, final validation loss, test accuracy, Cohen's kappa score, and Precision.


Asunto(s)
Aprendizaje Profundo , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación
4.
J Healthc Eng ; 2018: 3640705, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30510671

RESUMEN

Using deep neural networks for segmenting an MRI image of heterogeneously distributed pixels into a specific class assigning a label to each pixel is the concept of the proposed approach. This approach facilitates the application of the segmentation process on a preprocessed MRI image, with a trained network to be utilized for other test images. As labels are considered expensive assets in supervised training, fewer training images and training labels are used to obtain optimal accuracy. To validate the performance of the proposed approach, an experiment is conducted on other test images (available in the same database) that are not part of the training; the obtained result is of good visual quality in terms of segmentation and quite similar to the ground truth image. The average computed Dice similarity index for the test images is approximately 0.8, whereas the Jaccard similarity measure is approximately 0.6, which is better compared to other methods. This implies that the proposed method can be used to obtain reference images almost similar to the segmented ground truth images.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Humanos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...